

Scientific Computing Environments in the age of

virtualization
Toward a universal platform for the Cloud

Karim Chine
Cloud Era Ltd

Cambridge, UK

karim.chine@polytechnique.org

www.biocep.net

Abstract— This paper describes Biocep-R, an Open Source

platform for the virtualization of Scientific Computing

Environments (SCEs) such as R and Scilab. To our knowledge it

is the first time that a software platform enables geographically

distributed collaborators to view and analyze terabytes of data

interactively and collaboratively, using standard computational

tools. Those tools can be running on high performance machines

or on a Cloud. This is also the first time that a full end-to-end

solution is proposed for reproducible computational research in a

Cloud and for virtual appliances-based education.

Keywords: HPC; cloud computing; distributed computing;

application virtualization; SaaS; Web Services; workflows;

cyberinfrastructure; large scale data mining; collaborative data

analysis; reproducible research; open source

I. INTRODUCTION

 R is a language and environment for statistical computing

and graphics. It is becoming the lingua franca of data analysis.

Repositories of contributed R packages related to a variety of

problem domains in life sciences, social sciences, finance,

econometrics, chemometrics, etc. are growing at an exponential

rate. Scilab is a scientific software package for numerical

computations providing a powerful open computing

environment for engineering and scientific applications.

Biocep-R is a GPL Java platform that enables to use R, Scilab

or any other computational environment with an API

(example: Sage, Octave, Root, Matlab, SAS, etc.) interactively

on Clusters, Grids or private/public Clouds and to enable the

interoperability, pluggability, sharing and reuse of the

computing artifacts.

FIG. 1 Biocep-R Computational Open Platform

II. LOWERING THE BARRIERS FOR ACCESSING CYBER

INFRASTRUCTURES. LOCAL/REMOTE TRANSPARENCY

 The same application (the virtual workbench) makes it

easy to connect to various environments locally or on remote

machines whether they are nodes of a grid or virtual machines

of a Cloud. Using Java remoting technologies and HTTP

relays, Biocep-R makes it possible to uniquely identify a

remote generic computational engine with a simple URL:

Switching from one resource to another (EGEE to TeraGrid to

Amazon’s Cloud) becomes as simple as replacing one URL

with another.

FIG. 2 R Virtualization

 The virtual workbench has several dockable built-in views

including:

 Consoles for issuing commands to the SCEs or to the

server-side scripting interpreters (Python, Groovy,

Ruby, etc.)

 Remote working directory browser.

 Syntax-highlighting-enabled code editors.

 Help viewers.

 Viewers for PDF, SVG, HTML, etc. files.

 Highly interactive server-side graphic devices (with

built-in zooming, scrolling, coordinate tracking, etc.).

 Data inspectors.

 Server-side linked plots.

 Server-side spreadsheets that are fully integrated with

the SCEs functions and data, etc.

http://www.biocep.net/

 Biocep-R is currently available on Amazon’s Elastic

Cloud. Here are the steps a user needs to follow to perform

computing on EC2 (see www.biocep.net for details):

 Sign up for EC2

 Use Amazon’s Elasticfox Graphic User Interface

(GUI) to browse the Biocep-R AMIs (Amazon

Machine Images) and choose the one corresponding to

the computing environment and libraries he needs.

 Choose an instance type (memory size, number of

cores…), provide his email in the user data and run the

AMI.

 When the AMI starts running (~2 minutes wait time)

he receives an email containing a URL

 The user can then

 Click on the URL and this runs the Biocep-R

virtual workbench which connects automatically

to a computational engine on the running

machine instance. drag-and-drops his R scripts

and his data files from his desktop to the virtual

working directory view

 Execute R scripts using the R console

 Drag-and-drop result files to his desktop

 Shut down the AMI when the session is no

longer needed.

 Besides the virtual workbench, the RESTful Biocep-R

server enables users to compute and generate graphics on HPC

resources using only a browser. Simple URLs allow them to

execute any script or to evaluate any expression by workers

from a back-end computational engines pool and to retrieve

the results either as text files or as Graphics in any format

(pdf, svg, jpeg, png, etc).

FIG. 3 R virtualization on the National Grid Service

III. DEALING WITH THE DATA DELUGE

 The data generated by modern science tools can become

too large to move easily from one machine to another. This

can be an issue for large collaborative projects. The analysis of

such data can’t be performed the way it has been so far. The

answer to this increasingly acute problem is to take the

computation to the data and is what Biocep-R enables

cyberinfrastructures’ users to do: The generic computational

engine can run on any machine that has a privileged

connectivity with the data storage machine or within the large

scale database. The user can connect his Biocep-R virtual

workbench (or his scripts using the Biocep-R SOAP clients) to

the computational engine, set the working directory to the

location of the data (e.g. via NFS) and view or analyze the

data using R/Scilab packages.

IV. ENABLING COLLABORATION WITHIN COMPUTING

ENVIRONMENTS

 Users can connect to the same remote engine and work

with large scale data collaboratively using broadcasted

commands/graphics and collaborative spreadsheets. For

example, the Amazon EC2 user can forward the email

received from the Biocep-R running AMI to any number of

his collaborators. By clicking on the same URL, they all get

connected to the same computing environment. Every

command issued by one of them is seen by all the others.

Synchronized R graphics panels allow them to see the same

graphics and to annotate them collaboratively. Chatting is

enabled. Views based on a refactored iplots package enable

collaborative highlighting and color brushing on a variety of

high interaction graphics (linked plots).

FIG. 4 Collaborative R

V. SCIENCE GATEWAYS MADE EASY

 Web-based interfaces and portals allowing scientists to use

a Grid to solve their domain specific problems have always

been difficult to develop, upgrade and maintain. We should

have front ends that are easy to create. Biocep-R proposes a

different paradigm for the creation and distribution of such

front-ends to HPC/Cloud environments.

1) The Biocep-R Plug-ins

 The Biocep-R platform defines a contract for creating

cross-platform statistical/numerical new interfaces in Swing-

Java either programmatically or using visual composition tools

like the Netbeans GUI designer. The views can be bundled

http://www.biocep.net/

into zip files and opened by anyone using the Biocep-R virtual

workbench. The views receive a Java Interface that allows

them to use the R/Scilab engine to which the workbench is

connected and that can be running at any location.

 Three-parts-URLs (Biocep-R’s Java Web Start trigger +

computational engine’s URL parameter + plug-in’s zip file

URL parameter) can be used to deliver those GUIs to the end-

user. He retrieves them in one click and the only software

required to be preinstalled on his machine is a Java runtime.

Instead of requiring a transparent connection to a server-side

Grid/Cloud-enabled engine, the distribution URLs can be

written to trig transparently the creation of a computational

engine on the user’s machine: a zipped version of R is copied

on the user’s machine (with or without administrative

privileges) and is used transparently by the GUI.

FIG. 5 GUI Plug-ins

2) The Biocep-R Spreadsheets

 The Biocep-R spreadsheets are Java-based built originally

using the OSS jspreadsheet. Unlike jspreadsheet, Calc and

Excel’s spreadsheets, they have their models on server-side,

are HPC and collaboration enabled and are fully connected

with the remote statistical/numerical engine's workspace. This

enables for example R data import/export from/to cells and R

functions use in formula cells. Dedicated R functions

(cells.get, cells.put, cells.select, etc.) allow the R user to

retrieve the content of cell ranges into the R workspace or to

update them programmatically: An R script can reproduce

entirely the spreadsheet. A macros system allows the user to

define listeners on R variables and on cell ranges and to define

corresponding actions as R/Java scripts. Specific macros

called datalinks allow the user to bi-directionally mirror R

variables with cell ranges. R graphics and User Interface

components can be docked onto cell ranges. UI components

can be for example:

- sliders mirroring R variables

- Graphic Panels showing R Graphics (in any format)

produced by user defined R scripts and automatically

updated in case user-defined R variables have their

values change or in case cells within a user-defined

cell ranges list are updated

- Buttons executing any user-defined R script, etc.

This spreadsheet enables scientists without programming

skills to create sophisticated Grid/Cloud-based analytical

views and dashboards and lowers the barriers for creating

science gateways and distributing them.

VI. BRIDGING THE GAP BETWEEN EXISTING SCES AND

GRIDS/CLOUDS

 Once the user’s workbench is connected to a remote

R/Scilab engine, a RESTful embedded server (local http relay)

enables third-party applications such as emacs, Open Office

Calc or Excel to access and use the Grid/Cloud-enabled

engine. For example, an Excel add-in is being built to use the

full capabilities of the platform and reproduce the features of

the Biocep-R spreadsheets from within Excel. The bi-

directional mirroring of server-side spreadsheets’ models into

Excel cell ranges will also be available. This will allow users

to overcome some of the Excel flaws (limited capabilities in

statistical analysis, inaccurate numerical calculations at the

edge of double, inconsistent identification of missing

observations...). Excel becomes a front-end of choice to

Grid/Cloud resources and can then become the universal

workbench for different sciences.

FIG. 6 R On Amazon’s Elastic Cloud EC2

VII. A UNIVERSAL COMPUTING TOOLKIT FOR SCIENTIFIC

APPLICATIONS

 Biocep-R frameworks and tools make it possible to use R

as a Java object-oriented toolkit or as an RMI server. All the

standard R objects have been mapped to Java and user defined

R classes can be mapped to Java on demand. R functions can

be called from Java as if they were Java functions. The input

parameters are provided as Java objects and the result of a

function call is retrieved as a Java object. Calls to R functions

from Java locally or remotely cope with local and distributed

R objects. The full capabilities of the platform are exposed

via a SOAP and RESTful front-ends. Several tools and

frameworks are provided to help building analytical

desktop/web applications and scalable data analysis pipelines

in any programming language (Java, C#, C++, Perl, etc.)

VIII. SCALABILITY FOR COMPUTATIONAL BACK-ENDS

 Biocep-R provides a pooling framework for distributed

resources (RPF) allowing pools of computational engines to

be deployed on heterogeneous nodes/virtual machines

instances. These engines are managed and used via a simple

borrow/return API for multithreaded web applications and

web services, for distributed and parallel computing, for

dynamic content on-the-fly generation (analytic results, tables

and graphics in various formats for thin web clients) and for

computational engines’ virtualization in a shared

computational resources context. The engines become

agnostic to the hosting operating system. Several tools are

provided to monitor and manage the pools programmatically

or interactively (Supervisor UI). The pooling framework

enables transparent cloudbursting: Amazon EC2 virtual

machines instances hosting one or many computational

engines can be fired up or shut down to scale up or scale down

according to the load in a highly scalable web applications

deployment for example.

Fig. 7 R engines pools deployment – Cloudbursting

IX. DISTRIBUTED COMPUTING MADE EASY

 To solve heavily computational problems, there is a need

to use many engines in parallel. Several tools are available but

they are difficult to install and beyond the technical skills of

most scientists. Biocep-R solves this problem. From within a

main R session and without installing any extra

toolkits/packages, it becomes possible to create logical links to

remote R/Scilab engines either by creating new processes or

by connecting to existing ones on Grids/Clouds. Logical links

are variables that allow the R/scilab user to interact with the

remote engines. rlink.console, rlink.get, rlink.put allow the

user to respectively submit R commands to the R/Scilab

worker referenced by the rlink, retrieve a variable from the

R/scilab worker’s workspace into the main R workspace and

push a variable from the main R workspace to the worker’s

workspace. All the functions can be called in synchronous or

asynchronous mode. Several rlinks referencing R/Scilab

engines running at any locations can be used to create a logical

cluster which enables to use several R/Scilab engines in a

coordinated way. For example, a function called cluster.apply

uses the workers belonging to a logical cluster in parallel to

apply a function to a large scale R data.

Running

 Machine Instance X

EBS

Volume

Running

 Machine Instance Y

Amazon EC2 Hypervisor

Running

 Machine Instance Z

NFS

Virtual

Workbench

FIG. 8 Distributed Computing on EC2

X. BRIDGING THE GAP BETWEEN MAINSTREAM SCES

 The platform has a server-side extensions architecture that

enables the creation of bridges between the remote

computational engine and any third party tool. Besides R and

Scilab, several widely used environments will be integrated in

the future (Matlab, Root, SAS, etc.). Since R and Scilab are

running within the same process (same Java Virtual Machine),

it is easy and very fast to exchange data between them. This

can be achieved for example by using the Groovy interpreter

available as part of the remote engine. The Python client

provided by the platform makes it possible for the Scipy

community to use R/Scilab engines on Grids/Clouds directly

from within their python scripts.

XI. BRIDGING THE GAP BETWEEN MAINSTREAM SCES AND

WORKFLOW WORKBENCHES

 Biocep-R enables automatic exposure of R functions and

packages as Web Services. The generated Web Services are

easy to deploy and can use back-end computational engines

running at any location. They can be seamlessly integrated as

workflows nodes and used within environments such as

Knime, Taverna or Pipeline Pilot. They can be stateless (an

anonymous R worker performs the computation) or stateful

(an R worker reserved and associated with a session ID is used

and can be reused until the session is destroyed). The

statefulness solves the overhead problem caused by the

transfer of intermediate results between workflow nodes.

FIG. 9 Generated stateful Web Services workflows

XII. THE BUILDING BLOCKS OF A PLATFORM FOR STATISTICS

AND APPLIED MATHEMATICS EDUCATION

 Besides being free and open source and therefore

accessible to students and educators, Biocep-R provides

education-friendly features that only proprietary software

could offer so far (for example the centralized and controlled

server-side deployment of the Scientific Computing

Environments) and enables new scenarios and practices in the

teaching of statistics and applied mathematics. With Biocep-R,

it becomes possible for educators to hide the complexity of R,

Scilab, Matlab, etc. with User Interfaces such as Biocep-R

plugins/spreadsheets. These are very easy to create and to

distribute to students. The User Interfaces reduce the

complexity of the learning environment and keep beginning

students away from the steep learning curves of R, Scilab or

Matlab. Once created by one educator, the User Interfaces can

be shared, reused and improved by other educators. Dedicated

repositories can be provided to centralize the efforts and

contributions of the community of educators and help them

sharing the insight gained in using this new environment. One

could envisage these methods being used from primary

schools to graduate-level studies.

 Virtual appliances (VMWare/Virtualbox/Zen virtual

machines) prepared by educators can be provided to students

on USB keys. The virtual machines contain the SCE, the

libraries used for the course and Biocep-R. The students need

only to have Java and a virtual machine player (the free

VMware player for example) installed on their laptops to run

the virtual Biocep-R workbench and to connect to a

computational engine on the virtual machine. The virtual

appliance is fully self-contained: the code needed to run the

workbench or the plug-ins prepared by the educator is

delivered by the virtual appliance itself thanks to the Biocep-R

code server that runs at startup. The interaction between the

student and the SCE as well as the artifacts he produces are

saved within the Biocep-R-enabled-virtual machine. The

educator can retrieve the USB keys used by the students and

checks not only the validity of the different intermediate

results they obtained but also the path they followed to get

those results.

 The collaboration capabilities of the virtual workbench

open also new perspectives in distributed learning. The

Educator can connect anytime to the SCEs of students at any

location. He can then see/update their environments and guide

them remotely. Collaborative problem solving becomes also

possible and can be used as a support for learning.

XIII. THE BUILDING BLOCKS OF A TRACEABLE AND

REPRODUCIBLE COMPUTATIONAL RESEARCH PLATFORM

 We provide a system so that the computational

environment, the data and the manipulations of the data

(scripts, applications) can be recorded. These can be used by

reviewers, collaborators and anyone wanting to investigate the

data. Biocep-R provides an end-to-end solution for traceable

and reproducible computational research. Snapshots of

computational environments can be created as virtual machine

images (AMIs). Snapshots of versioned libraries and working

directories can be created as Elastic Block Stores (EBSs). The

Biocep-R virtual workbench makes it possible to all scientists

to work with these snapshots (AMIs + EBSs) and produce

them easily. By Providing the Biocep-R-enbled AMI

identifier, the complementary computational libraries EBS

snapshots identifiers and the working directory (data) EBS

snapshot identifier that have been used for his research, the

scientist makes it possible to anyone to rebuild all the data and

the computational environment required to process that data.

 High-level Web Services

Biocep

Hypervisor

Operating System

Java Virtual Machine

Hardware

User 1

 Developer

User 2

Virtual

Workbench

C
o

lla
b

o
ra

ti
v
e

 D
a

ta
 A

n
a

ly
s
is

Virtual

Workbench

B
io

c
e

p

FIG. 10 Biocep-R within the Technology Ecosystem

XIV. CONCLUSION

 This new environment has the potential de democratize the

cloud and to push forward the reproducibility of

computational research. Its current availability and easy access

on amazon's Elastic cloud and its planned deployments on

major Grids (NGS, EGEE, TeraGrid) maximize its chances for

uptake and adoption. Academia, Industry and Educational

Institutions would benefit from the emergence of a new

environment for the interoperability, sharing and reuse of

computational artifacts. The creation and sharing of analytical

tools and resources can become accessible to anyone (open

science). An international portal for on demand computing

(www.elasticr.net) is being built using the different

frameworks provided by Biocep-R and could become a single

point of access to Virtualized SCEs on public servers and on

virtual appliances that are ready for use on various clouds.

There is no question about the need for more usability in the

computational landscape. Java, Xen, EC2, R and Biocep-R

prove that the target of a universal computational environment

for science and for everyone is definitely within reach.

REFERENCE

[1] R Development Core Team (2009). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

[2] Hardt, M., Seymour, K., Dongarra, J., Zapf, M., Ruiter, N.V.
"Interactive Grid-Access Using Gridsolve and Giggle," Computing and
Informatics, Vol. 27, No. 2, 233-248, ISSN 1335-9150, 2008.

[3] http://www.scilab.org

[4] Theus, M. and Urbanek, S. (2008) Interactive Graphics for Data
Analysis: Principles and Examples, CRC Press, ISBN 978-1-5848-8594-
8

http://www.scilab.org/

