
Chapter 19

Open Science in the Cloud: Towards a Universal

Platform for Scientific and Statistical Computing

Karim Chine

Cloud Era Ltd, Cambridge, UK

1. Introduction

The UK, through the e-Science program, the US through the NSF-funded cyber

infrastructure and the European Union through the ICT Calls aimed to provide

“the technological solution to the problem of efficiently connecting data,

computers, and people with the goal of enabling derivation of novel scientific

theories and knowledge” [1]. The Grid [2] [3], foreseen as a major accelerator of

discovery, didn’t meet the expectations it had excited at its beginnings and was not

adopted by the broad population of research professionals. The Grid is a good tool

for particle physicists and it has allowed them to tackle the tremendous

computational challenges inherent to their field. However, as a technology and

paradigm for delivering computing on demand, it doesn’t work and it can’t be

fixed. On one hand, “the abstractions that Grids expose – to the end-user, to the

deployers and to application developers – are inappropriate and they need to be

higher level” [4], and on the other hand, academic Grids are inherently

economically unsustainable. They can’t compete with a service outsourced to the

Industry whose quality and price would be driven by market forces. The

virtualization technologies and their corollary, the Infrastructure-as-a-Service

(IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a

sustainable environment for computational sciences that would lower the barriers

for accessing federated computational resources, software tools and data; enable

collaboration and resources sharing and provide the building blocks of a

ubiquitous platform for traceable and reproducible computational research.

Amazon Elastic Compute Cloud (EC2) [22] is an example of Infrastructure-as-a-

Service that anyone can use today. Its considerable success announces the

emergence of a new era. However, bringing that era for research and education

still requires the software that would bridge the gap between the cloud and the

scientists’ everyday tools and would make Infrastructure-as-a-Service a trivial

commodity.

This article describes Elastic-R [9][10], a software platform that makes
working with R on the cloud as simple as working with it locally. More
generally, it aims to be the missing link between the cloud and the most
widely used data analysis tools and Scientific Computing Environments
(SCEs). Elastic-R synergizes the usage scenarios of those environments

2

with the usage scenarios of the cloud and empowers them with what the
cloud has best to offer:

User-friendly and flexible access to Infrastructure-as-a-Service: The cloud
interfaces are simple and expose the right abstractions for managing and
using virtual appliances within a federated computing environment but
the cloud consoles remain tools for computer savvies. Elastic-R offers a
simplified façade to the cloud that makes any scientist able to choose and
run the virtual machine with the specific scientific computing environment
(example: R version 2.9, Scilab [6], Sage [12], Root [13], etc.). The scientist
can then have access to the full capabilities of the environment using the
Elastic-R Java workbench or from within a standard web browser using
the Elastic-R Ajax workbench. The scientist can issue commands, install
and use new packages, generate and interact with graphics, upload and
process files, download results, create and edit R-enabled server-side
spreadsheets, etc. The scientist can disconnect from the engine and
reconnect again from anywhere, retrieving his full session including
workspace, graphics, etc. and can continue working from where he left off.
The virtual machine can be simply shut down when not needed anymore.
The user is charged only for the usage time. User’s data (working directory
content) remains on a virtual disk on the cloud that can be attached once
again to a new virtual machine instance.

Collaboration: A virtual machine instance on the cloud has a public IP
address and can be seen and used by the owner’s collaborators who can be
located anywhere. Elastic-R allows the scientist to expose his machine and
his R sessions (for example) to his collaborators. All of them can connect
their Java or Ajax workbenches to the same R engine and can control that
engine and update its environment. The actions of each collaborator in the
console (commands issued, chat) , on the graphics (plotting, annotating,
resizing and slides viewing) or on the spreadsheets (cells updating, cells
selecting) are broadcasted to the others and their workbenches show the
changes in real time.

On-demand elasticity: Elastic-R exposes to the scientist a major feature of the
cloud which is the ability to choose the capacity of the virtual machine
instances, such as the number of virtual cores, the memory size and the
disk space. He can then run on the cloud analysis or simulations that
require more memory than available on his laptop or would take days if
run locally. Elastic-R allows the scientist to solve compute-intense problem
by starting any number of virtual machines hosting R engines that can
process in parallel partial tasks. Those pools of engines can also be used to

3

create Web applications with dynamic analytical content generated by R or
any other environment. For those applications, the Elastic-R platform
enables cloudbursting: virtual machines can be fired up or shut down
(increasing or decreasing the engines pool size) to scale up or scale down
according to the load of the application.

Applications deployment flexibility: The cloud can host very easily client-
server style applications. Elastic-R is a platform that allows anyone to
assemble statistical/numerical methods and data on the server (an Elastic-
R virtual machine instance on the cloud) and to visually create and
publish, in the form of URLs, interactive user interfaces and dashboards
exposing those methods and data. Elastic-R also provides tools that allow
anyone to expose those methods (implemented by R functions for
example) as SOAP Web services that can be used as computational
services on the cloud for data analysis pipelines or as nodes for workflow
workbenches.

Recording capabilities: Because the scientific computing environments
accessible through Elastic-R are running on virtual machines and because
the working directories are hosted by virtual disks, a snapshot of the full
updated computational environment can be produced at any point in time.
That snapshot can be archived or made available to anyone using the
Elastic-R workbenches: an author can share his environment with the
reviewers of the journal to which he submitted his paper, a teacher can
make the statistical learning environment needed for his course available
to his students, a researcher in laboratory A can make his simulation
environment accessible to his collaborators in laboratory B, etc.

This chapter is organized as follows: The first section describes the
building blocks of the Elastic-R platform and the ecosystem it creates for
the interoperability, sharing and reuse of the computing artifacts. The
second section describes how the usage scenarios of Elastic-R can be
integrated with those of an IaaS. The third section details the major e-
Science use cases Elastic-R deals with. The fourth section shows how it can
be used as a highly productive cloud applications platform.

2. An Open Platform for Scientific Computing, the Building

Blocks.

R is a language and environment for statistical computing and graphics and it

became the lingua franca of data analysis [5][7]. R has a very powerful graphics

4

system as well as cross-platform capabilities for packaging any computational

code. Hundreds of available R packages, exponentially growing in number,

implement the most up-to-date computational methods and reflect the state-of-the-

art of research in various fields. R packages have become a reproducible research

enabler because they enable functions and algorithms to be reused and shared.

There is no obstacle to a large-scale deployment of R on public clouds and Grids

since it is licensed under the GNU GPL [11]. However, R is not multithreaded and

does not operate as a server. As a language, it implements the powerful S4 class

system but as a library, R has only a low-level non-object oriented Application

Programming Interface (API). Graphical User Interfaces (GUIs) development for

R remains non standardized. R's potential as a computational back end engine for

applications and service-oriented architectures has yet to be fully exploited. While

its user base is growing at a high rate, this growth rate would be significantly

higher with a user-friendly and rich workbench. Elastic-R brings to the R

ecosystem all those missing features which may enable it to be applied in many

more situations, in various different ways. Its ambition though goes far beyond the

provision of new tools and frameworks. By extending R’s logic of openness and

extensibility, Elastic-R builds an environment where all the artifacts and resources

of computing become “pluggable” and not only the computational component (the

R package).

Figure 1. The open computational platform’s ecosystem.

Figure 1 shows the key features of Elastic-R. The Java or Ajax Elastic-R

workbench allows the scientist, the statistician, the financial analyst, etc. to easily

5

assemble (plug together) synergetic capabilities, described in the following

subsections:

2.1 The processing capability

By providing a simple URL and credentials, the scientist connects his workbench

to an R-based remote computational engine and gain access to the computational

resource whether it is a node of Grid, a virtual machine of a cloud, a cluster or his

own laptop. The engine is agnostic to its hosting operating system and hardware.

IaaS requires such a mechanism for computing to become “like electricity”. EC2

[22] allows the user to choose the capacity of the virtual machine (number of

virtual cores, memory size, etc.) he would like to launch. The Elastic-R

workbench exposes that choice to the scientist in its simplified EC2 Console. The

state of an Elastic-R engine persists until the computational resource is released

(the virtual machine is shut down, the interactive Grid job is killed, the process on

the physical server is killed, etc.). The scientist can disconnect form the engine

and reconnect again from anywhere: he retrieves his session with all variables,

functions, graphics, spreadsheets, etc.

2.2 The mathematical and numerical capability

By gaining access to an R session and by importing into his workspace the R

packages related to his problem domain, the scientist gathers the functions and

mathematical models needed to process data and transform it into knowledge and

insight. The R package can be a wrapper of any mathematical library written in C,

C++, FORTRAN, etc. R can be considered as a universal framework for

computational code and computational toolkits. From within his R session, the

scientist can also call Scilab [6], Sage [13], Root [14], etc. and increase the

mathematical capability of his environment. An architecture for server-side

extensions allows anyone to build java bridges that couple the Elastic-R engine

with any software. Such bridges are available for Matlab [16] and OpenOffice

[15].

2.3 The orchestration capability

The S language implemented by R is one of the most powerful languages ever

created for “programming with data” [12]. Besides R, the user can orchestrate

tasks and control data flow using python and groovy. Interpreters for theses

scripting languages are embedded both within the Elastic-R engine (on server

side) and within the workbench (client side). The full capabilities of the platform

are exposed via SOAP and RESTful front-ends (Computational Application

Programming Interfaces in figure 1) and the Elastic-R engine can be piloted

programmatically from Java, Perl, C#, C++, etc. A tool is provided to enable the

scientist to generate and deploy SOAP Web services exposing a selection of his R

6

functions (Figure 1: generated computational web services). They can be used as

nodes within workflow workbenches. The nodes are dynamically connected to the

scientist’s R session and the processing of data is done on the cloud if the Elastic-

R engine exposing the Web service is on the cloud.

2.4 The interaction capability

The console views within the Java and Ajax workbenches allow the full control of

an R session as well as the use of python, groovy and Linux shells. Besides the

consoles, both workbenches have several dockable built-in views including remote

directory browsers for the viewing, download and upload of files from and to the

remote engine’s working directory, syntax-highlighting-enabled code editors, help

browsers, viewers for various file formats (PDF, SVG, HTML, etc.), interactive

server-side graphic devices with built-in resizing, zooming, scrolling, coordinate

tracking and annotation capabilities, data inspectors, linked plots, spreadsheets

fully integrated with R functions and data.

The workbench’s architecture for plugins lets anyone create his own views and

dashboards to make workbenches more productive or to expose statistical and

numerical models through simple graphical user interfaces. All the views of the

workbenches are collaborative: when more than one user is connected to the same

Elastic-R engine, the actions of one collaborator are broadcasted to all the others.

An example of the Elastic-R Java workbench is shown in Figure 2.

Figure 2. Elastic-R Java workbench.

7

2.5 The persistence capability

The Elastic-R computational engine’s working directory can be on a local or a

network file system and its content can be easily synchronized with an FTP server

or with Amazon S3 [21]. When the scientist uses the simplified EC2 console to

start a Elastic-R-enabled Amazon Machine Image (AMI), an Amazon Elastic

Block Store (EBS) is automatically attached to the running AMI. That EBS

becomes the working directory of all the Elastic-R engines hosted by the AMI and

all the files generated by the scientist including the workspaces serialization, the

spreadsheets content, the generated web services, etc. are kept when the AMI is

shutdown. The EBS is also a place where the R packages installed by the scientist

are stored. Those packages are made available to the Elastic-R engines when a

new AMI is started. A snapshot of the EBS can be created by the scientist who can

decide to share that snapshot with other EC2 users.

3. Elastic-R and Infrastructure-as-a-service

Elastic-R can be used on any type of infrastructure. However, the platform takes

its full dimension only when it is used within an IaaS-style-cloud whether it is

Amazon EC2 or a private cloud based on Eucalyptus [17], OpenNebula [18] or

Nimbus [19].

Figure 3. Elastic-R in the IaaS environment.

8

Figure3 shows the role of Elastic-R within an Infrastructure as service

environment (the concentric circles). Elastic-R wraps R (in the very centre) with

Java Object-oriented layers that can be accessed remotely from anywhere. The R

engine created (inside the Java virtual machine circle) is agnostic to the operating

system and to the hardware. In this case, it runs within a virtual machine that can

be based on any OS. The virtual machine uses the resources of the hardware via

the Hypervisor and its management by the end user (start-up, shutdown, etc.) is

done using the outer layer (IaaS API). “User1” and “User2” can connect to the R

engine and use it collaboratively from their Java workbenches, their Ajax

workbenches or from their Excel spreadsheets. The Developer can use the R

engine (one or many, on one or many virtual machines) by calling its remote API

(Java-RMI, SOAP, REST) from his ASP.NET web application, his Java desktop

application, his Perl scripts, his Excel Add-in, etc. “User 3” from his portable

device (iPhone, Android-based phone, etc.) can use the Ajax workbench to access

the same R engine as “User 1” and “User 2” and show them his data, spreadsheets,

slides, etc. interactively: the Ajax workbench gives the same capabilities to “User

1”, “User 2” and “User 3”. They all can issue commands to R, install and use new

packages, generate and interact with graphics, upload and process files, download

results, etc.

3.1 The Building Blocks of a Traceable and Reproducible Computational

Research Platform

Elastic-R on an IaaS-style cloud provides a system so that the computational

environment, the data and the manipulations of the data (scripts, applications) can

be recorded. These can be used by reviewers, collaborators and anyone wanting to

investigate the data. Elastic-R provides an end-to-end solution for traceable and

reproducible computational research. Snapshots of computational environments

can be created as virtual machine images (AMIs). Snapshots of versioned libraries

and working directories can be created as Elastic Block Stores (EBSs). The

Elastic-R Java and Ajax workbenches make it possible to all scientists to work

with these snapshots (AMIs + EBSs) and produce them easily. By Providing the

Elastic-R-enabled AMI identifier, the complementary computational libraries EBS

snapshots identifiers and the working directory (data) EBS snapshot identifier that

have been used for his research, the scientist makes it possible to anyone to

rebuild all the data and the computational environment required to process that

data.

3.2 The Building Blocks of a Platform for Statistics and Applied Mathematics

Education

Besides being free and mostly open source and therefore accessible to students

and educators, Elastic-R provides education-friendly features that only proprietary

software could offer so far (for example the centralized and controlled server-side

deployment of the Scientific Computing Environments) and enables new scenarios

9

and practices in the teaching of statistics and applied mathematics. With Elastic-R,

it becomes possible for educators to hide the complexity of R, Scilab, Matlab, etc.

with User Interfaces such as the Elastic-R plugins and spreadsheets. These are

very easy to create and to distribute to students. The User Interfaces reduce the

complexity of the learning environment and keep beginning students away from

the steep learning curves of R, Scilab or Matlab. Once created by one educator,

the User Interfaces can be shared, reused and improved by other educators.

Dedicated repositories can be provided to centralize the efforts and contributions

of the community of educators and help them sharing the insight gained in using

this new environment. One could envisage these methods being used from primary

schools to graduate-level studies.

Educators can adapt the Elastic-R virtual machines images to the specific needs of

their courses and tutorials. For example, after choosing the most appropriate

image, they can add to it the missing R packages, the required data files, install the

missing tools, etc. The new image can then be provided to students on USB keys

or made accessible on an IaaS-style cloud. In the first case, the students need only

to have Java and a virtual machine player (the free VMware player for example)

installed on their laptops to run the Elastic-R workbench and to connect to a

computational engine on the virtual machine. In the second case, they need only a

browser. Once again, a virtual machine prepared by one educator can be shared,

reused and improved by other educators.

The virtual machine is fully self-contained: the code needed to run the workbench

or the plug-ins prepared by the educator can be delivered by the virtual appliance

itself thanks to the Elastic-R code server that runs at startup. The interaction

between the student and the SCE as well as the artifacts produced are saved within

the Elastic-R-enabled-virtual machine. The educator can retrieve the USB keys

used by the students (or connect to the virtual machine instance on the IaaS-style

cloud) and checks not only the validity of the different intermediate results they

obtained but also the path they followed to get those results.

The collaboration capabilities of the workbench open also new perspectives in

distributed learning. The educator can connect anytime to the SCEs of students at

any location. He can see and update their environments and guide them remotely.

Collaborative problem solving becomes also possible and can be used as a support

for learning.

4. Elastic-R, an e-Science Enabler

Elastic-R is an e-Science platform that deals with some of the most timely use

cases related to the use of Information and Communications Technologies (ICT)

in research and education:

4.1 Lowering the Barriers for Accessing on-Demand Computing

Infrastructures. Local/Remote Transparency

10

The same application, the Elastic-R workbench, makes it easy to connect to

various environments locally or on remote machines whether they are nodes of a

Grid or virtual machines of a cloud. Switching from one resource to another (for

example from one virtual machine instance on Amazon Elastic Compute Cloud to

another or from an interactive Grid job on the European Grid EGI to an interactive

job on an intranet cluster) becomes as simple as replacing one URL with another.

Figure 4. Elastic-R Ajax workbench.

4.2 Dealing with the Data Deluge

The data generated by modern science tools can become too large to move easily

from one machine to another. This can be an issue for large collaborative projects.

The analysis of such data can’t be performed the way it has been so far. The

answer to this increasingly acute problem is to take the computation to the data

and is what Elastic-R enables users to do: The generic computational engine can

run on any machine that has a privileged connectivity with the data storage

machine or within the large scale database. This is the case when an Elastic-R

EC2 AMI is used to process data that is already on Amazon’s Elastic Cloud. The

11

user can connect his virtual workbench (or his scripts using the Elastic-R SOAP

clients) to the computational engine, set the working directory to the location of

the data (e.g. via NFS) and view or analyze the data using R/Scilab packages.

Figure 5. Elastic-R on an LSF cluster.

4.3 Enabling Collaboration within Computing Environments

Users can connect to the same remote engine and work with large scale data

collaboratively using broadcasted commands/graphics and collaborative

spreadsheets. Every command issued by one of them is seen by all the others.

Synchronized R graphics panels allow them to see the same graphics and to

annotate them collaboratively. Chatting is enabled. Linked plots views based on a

refactored iplots package [8] enable collaborative highlighting and color brushing

on a variety of high interaction graphics.

4.4 Science Gateways Made Easy

Web-based interfaces and portals allowing scientists to use federated distributed

computing infrastructures to solve their domain specific problems have always

been difficult to develop, upgrade and maintain. We should have front ends that

are easy to create. Elastic-R proposes a different paradigm for the creation and

12

distribution of such front-ends to HPC/cloud environments with plugins and

server-side spreadsheets (see 5.1 and 5.2)

Figure 6. Collaborative session with the Elastic-R workbench.

4.5 Bridging the Gap between Existing Scientific Computing Environments and

Grids/Clouds

Once the user’s workbench is connected to a remote R/Scilab engine, a RESTful

embedded server (local http relay) enables third-party applications such as emacs,

OpenOffice Calc or Excel to access and use the Grid/cloud-enabled engine. For

example, an Excel add-in enables scientists to use the full capabilities of the

Elastic-R platform and reproduce the features of the Elastic-R spreadsheets from

within Excel. The bi-directional mirroring of server-side spreadsheets’ models into

Excel cell ranges is also available. This allows users to overcome some of the

Excel flaws (limited capabilities in statistical analysis, inaccurate numerical

calculations at the edge of double, inconsistent identification of missing

observations...). Excel becomes a front-end of choice to Grid/cloud resources and

can then become the universal workbench for different sciences.

4.6 Bridging the Gap between Mainstream Scientific Computing Environments

13

The platform has a server-side extensions architecture that enables the creation

of bridges between the remote computational engine and any third party tool.

Besides R and Scilab, several widely used environments can be integrated

(Matlab, Root, SAS, etc.). Since R and Scilab are running within the same process

(same Java Virtual Machine), it is easy and very fast to exchange data between

them. This can be achieved for example by using the Groovy interpreter available

as part of the remote engine. The SOAP API can be called from any environment.

It enables SciPy users for example to work with Elastic-R engines on the cloud

and to call R and Scilab functions.

4.7 Bridging the Gap between Mainstream Scientific Computing Environments

and Workflow Workbenches

Elastic-R enables automatic exposure of R functions and packages as Web

Services. The generated Web Services are easy to deploy and can use back-end

computational engines running at any location. They can be seamlessly integrated

as workflows nodes and used within environments such as Knime [24], Taverna

[25] or Pipeline Pilot [26]. They can be stateless (an anonymous R worker

performs the computation) or stateful (an R worker reserved and associated with a

session ID is used and can be reused until the session is destroyed). The

statefulness solves the overhead problem caused by the transfer of intermediate

results between workflow nodes.

Figure 7. Workflows with generated Stateful SOAP Web services.

14

4.8 A Universal Computing Toolkit for Scientific Applications

Elastic-R frameworks and tools make it possible to use R as a Java object-oriented

toolkit or as an RMI server. All the standard R objects have been mapped to Java

and user defined R classes can be mapped to Java on demand. R functions can be

called from Java as if they were Java functions. The input parameters are provided

as Java objects and the result of a function call is retrieved as a Java object. Calls

to R functions from Java locally or remotely cope with local and distributed R

objects. The full capabilities of the platform are exposed via a SOAP and

RESTful front-ends. Several tools and frameworks are provided to help building

analytical desktop/web applications and scalable data analysis pipelines in any

programming language (Java, C#, C++, Perl, etc.)

Figure 8. Java classes diagram: mapping of standard R objects

Figure 9. Java classes diagram: generated mapping for ExpressionSet (S4 class)

15

Figure 10. Elastic-R engine - usage scenarios and architecture.

4.9 Scalability for Computational Back-Ends

Elastic-R provides a pooling framework for distributed resources (RPF) allowing

pools of computational engines to be deployed on heterogeneous nodes/virtual

machines instances. These engines are managed and used via a simple

borrow/return API for multithreaded web applications and web services, for

distributed and parallel computing, for dynamic content on-the-fly generation

(analytic results, tables and graphics in various formats for thin web clients) and

for computational engines’ virtualization in a shared computational resources

context. The engines become agnostic to the hosting operating system. Several

tools are provided to monitor and manage the pools programmatically or

interactively (Supervisor UI). The pooling framework enables transparent

cloudbursting: Amazon EC2 virtual machines instances hosting one or many

computational engines can be fired up or shut down to scale up or scale down

according to the load in a highly scalable web applications deployment for

example.

16

Figure 11. Elastic-R engines pools, usage scenarios and architecture.

4.10 Distributed Computing Made Easy

To solve heavily computational problems, there is a need to use many engines in

parallel. Several tools are available but they are difficult to install and beyond the

technical skills of most scientists. Elastic-R solves this problem. From within a

main R session and without installing any extra toolkits/packages, it becomes

possible to create logical links to remote R/Scilab engines either by creating new

processes or by connecting to existing ones on Grids/clouds. Logical links are

variables that allow the R/Scilab user to interact with the remote engines.

rlink.console, rlink.get, rlink.put allow the user to respectively submit R

commands to the R/Scilab worker referenced by the rlink, retrieve a variable from

the R/Scilab worker’s workspace into the main R workspace and push a variable

from the main R workspace to the worker’s workspace. All the functions can be

called in synchronous or asynchronous mode. Several rlinks referencing R/Scilab

engines running at any locations can be used to create a logical cluster which

enables to use several R/Scilab engines in a coordinated way. For example, a

function called cluster.apply uses the workers belonging to a logical cluster in

parallel to apply a function to a large scale R data.

17

 Figure 12. Parallel computing with Elastic-R on Amazon Elastic Compute Cloud.

5. Elastic-R, an application platform for the Cloud

Elastic-R is extensible with java components both on client-side (the plugins) and

on server-side (the extensions). With those components, anyone can create and

deploy his application on the cloud without having any specific knowledge about

the infrastructure.

5.1 The Elastic-R Plug-ins

The Elastic-R platform defines a contract for creating cross-platform

statistical/numerical new interfaces in Swing-Java either programmatically or

using visual composition tools like the Netbeans GUI designer. The views can be

bundled into zip files and opened by anyone using the Elastic-R workbench. The

views receive a Java Interface that allows them to use the R/Scilab engine to

which the workbench is connected and that can be running at any location.

Three-parts-URLs (Elastic-R’s Java Web Start trigger + computational engine’s

URL parameter + plugin’s zip file URL parameter) can be used to deliver those

GUIs to the end-user. He retrieves them in one click and the only software

required to be preinstalled on his machine is a Java runtime. Instead of requiring a

transparent connection to a server-side Grid/cloud-enabled engine, the distribution

URLs can be written to trig transparently the creation of a computational engine

18

on the user’s machine: a zipped version of R is copied on the user’s machine (with

or without administrative privileges) and is used transparently by the GUI.

Figure 13. Elastic-R plugins’ visual creation and publishing.

5.2 The Elastic-R Spreadsheets

The Elastic-R spreadsheets are Java-based built originally using the OSS

jspreadsheet. Unlike jspreadsheet, Calc and Excel’s spreadsheets, they have their

models on server-side, are HPC and collaboration enabled and are fully connected

with the remote statistical/numerical engine's workspace. This enables for

example R data import/export from/to cells and R functions use in formula cells.

Dedicated R functions (cells.get, cells.put, cells.select, etc.) allow the R user to

retrieve the content of cell ranges into the R workspace or to update them

programmatically: An R script can reproduce the spreadsheet entirely. A macros

system allows the user to define listeners on R variables and on cell ranges and to

define corresponding actions as R/Java scripts. Specific macros called datalinks

allow the user to bi-directionally mirror R variables with cell ranges. R graphics

and User Interface components can be docked onto cell ranges. UI components

can be for example: Sliders mirroring R variables; Graphic Panels showing R

Graphics (in any format) produced by user defined R scripts and automatically

updated in case user-defined R variables have their values change or in case cells

within a user-defined cell ranges list are updated; Buttons executing any user-

defined R script, etc. This spreadsheet enables scientists without programming

19

skills to create sophisticated Grid or cloud-based analytical views and dashboards

and lowers the barriers for creating science gateways and distributing them.

Figure 14. Elastic-R spreadsheets

5.3 The Elastic-R extensions

Elastic-R extensions are Java components that can be uploaded anytime to an

Elastic-R engine’s extensions folder. They are dynamically loaded by the engine’s

Java Virtual Machine and the code they expose can be called from the client.

Extensions allow anyone to build java bridges that couple the Elastic-R engine

with any software such as Matlab [16] and OpenOffice [15].

6. Conclusions and Future Directions

This article described the Elastic-R as a new environment that has the potential to

democratize the cloud and to push forward the reproducibility of computational

research. Its current availability and easy access on Amazon Elastic Compute

Cloud maximizes its chances for uptake and adoption. Academia, Industry and

Educational Institutions would benefit from the emergence of a new environment

for the interoperability, sharing and reuse of computational artifacts. The creation

and sharing of analytical tools and resources can become accessible to anyone

(open science). An international portal [10] for on demand computing is being

20

built using the different frameworks provided by Elastic-R and could become a

single point of access to Virtualized SCEs on public servers and on virtual

appliances that are ready for use on various clouds. There is no question about the

need for more usability in the computational landscape. Java, Xen, VMware, EC2,

R and Elastic-R prove that the target of a universal computational environment for

science and for everyone is definitely within reach.

21

References

1. http://en.wikipedia.org/wiki/Cyberinfrastructure.

2. I. Foster. What is the Grid? A Three Point Checklist. Grid Today, 1(6):22-25,

2002.

3. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the Grid.

Grid Computing: Making the Global Infrastructure a Reality, 2003.

4. Shantenu Jha, Andre Merzky, Geoffrey Fox, “Using clouds to provide grids

with higher levels of abstraction and explicit support for usage modes”

5. R Development Core Team (2009). R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna,

Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

6. http://www.scilab.org

7. http://www.nytimes.com/2009/01/07/technology/business-

computing/07program.html

8. Theus, M. and Urbanek, S. (2008) Interactive Graphics for Data Analysis:

Principles and Examples, CRC Press, ISBN 978-1-5848-8594-8

9. www.elasticr.net/platform

10. www.elasticr.net/portal

11. Programming with Data: A Guide to the S Language, John M. Chambers,

Springer-Verlag, New York, 1998.

12. http://www.sagemath.org/

13. http://root.cern.ch/

14. http://www.openoffice.org/

15. http://www.mathworks.co.uk/

16. http://open.eucalyptus.com/

17. http://www.opennebula.org/

18. http://www.nimbusproject.org/

19. Science Clouds: Early Experiences in Cloud Computing for Scientific

Applications, Keahey K., T. Freeman. Cloud Computing and Its Applications

2008 (CCA-08), Chicago, IL. October 2008

20. Interview with Kate Keahey, “An interview with Kate Keahey of the Nimbus

project, a cloud computing infrastructure” [Online]. Available:

http://www.nsf.gov/news/news_videos.jsp?cntn_id=114788&media_id=6510

5

21. Amazon, Inc., “Amazon Simple Storage Service.” [Online]. Available:

aws.amazon.com/s3

22. Amazon, Inc., “Amazon Elastic Compute Cloud.” [Online]. Available:

aws.amazon.com/ec2

23. NetSolve to GridSolve: The Evolution of a Network Enabled Solver, Asim

YarKhan, Jack Dongarra, and Keith Seymour, IFIP WoCo9 conference "Grid-

Based Problem Solving Environments: Implications for Development and

Deployment of Numerical Software", Prescott, AZ, July 17-21, 2006.

24. http://www.knime.org/

25. http://www.taverna.org.uk/

26. http://accelrys.com/products/scitegic/

http://www.r-project.org/
http://www.scilab.org/
http://www.elasticr.net/platform
http://www.elasticr.net/portal
http://www.sagemath.org/
http://www.openoffice.org/
http://www.nimbusproject.org/
http://www.knime.org/
http://www.taverna.org.uk/

22

Index terms (alphabetically):

Ajax

Android

EC2

Grid

IaaS

iPhone

Java

Open Science

Parallel Computing

Portal

R

Reproducible research

Scilab

SOAP

S

S3

Scientific Computing Environment

Statistical Computing

Virtualization

VM ware

Workbench

Workflow

